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A B S T R A C T   

A critique of the soil health framework is that biological indicators currently lag behind chemical and physical 
indicators of soil health. Incorporating nematode communities into the soil health framework could help to 
better reflect key aspects of soil food web structure and function and significantly contribute to ecosystem 
processes. However, little is understood regarding how nematode communities relate to soil biological health 
indicators such as permanganate oxidizable carbon (POXC), soil protein, mineralizable C, and enzyme activities 
in agroecosystems. Here, we use an exploratory factor analysis (EFA) to quantitatively explore which set of soil 
health indicators best explain a given factor (i.e. soil health trait) using data from two long term experimental 
trials and 44 farm fields across Ohio. Specifically, this paper aims to 1) integrate our understanding of nematode 
structure and function with other soil biological health indicators to describe soil health traits; and 2) determine 
how management practices alter soil health traits. We found that soil biological health indicators represented 
four underlying soil health traits: fungal organic matter processing pathway, the rate of nutrient cycling, trophic 
complexity, and cumulative disturbance. Results indicated that soil biological health indicators, such as enzyme 
activities, POXC, mineralizable C and soil protein were more integrated with nematode feeding groups than with 
nematode indices. Additionally, tillage intensity had a significant effect on the fungal organic matter processing 
pathway and the rate of nutrient cycling. This study indicates that nematode feeding groups can be readily 
incorporated into the soil health framework and future soil health assessments.   

1. Introduction 

Understanding belowground biodiversity and soil biological pro-
cesses is essential for sustained soil health (Ferris, 2010a; Dose et al., 
2015). Soil health is a growing field and is commonly defined as the 
ability of the physical, chemical, and biological components of the soil to 
sustain plant productivity, maintain animal health, and enhance water 
and air quality (Doran and Zeiss, 2000). Soil biological health is less 
understood because specific indicators are not as well developed or 
readily available compared to physical and chemical measures of soil 
health (Bünemann et al., 2018; O’Neill et al., 2021). As a result, there 
are growing calls from both the farming and scientific communities for 
soil biological health indicators to be further developed (Baveye, 2021). 
Currently, soil biological health indicators that quantify the soil 
microbiome are hard to interpret and costly (Fierer et al., 2021; 
Sprunger, 2015). Furthermore, soil metagenomic DNA sequencing does 

not necessarily inform ecological function, which is an essential linkage 
for understanding nutrient availability and overall soil health (Brussaard 
et al., 2007; Graham et al., 2016). 

In contrast to quantifying bacterial and fungal communities, nema-
todes have the potential to serve as strong soil biological health in-
dicators because of their trophic interactions with the microbial 
community and their ability to respond rapidly to changes within the 
soil environment (Ferris et al., 2001; Neher, 2001; Sánchez-Moreno 
et al., 2011; Hua et al., 2021). Nematodes span the trophic food web and 
function as both colonizing r-strategists and persistent K-strategists (Ritz 
and Trudgill, 1999; Yeates and Bongers, 1999; Yeates, 2003). Nema-
todes can be grouped into functional guilds that reflect several different 
niches within the soil food web based on feeding groups (Ferris et al., 
2001; Ferris, 2010b). For instance, the five main feeding groups consist 
of bacterial feeders (bacterivores), fungal feeders (fungivores), plant 
root feeders (plant parasitic), predators that prey on other nematodes 
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(predators), and omnivorous feeders (omnivores) (Ferris and Bongers, 
2009). Additionally, each nematode family has a specific colonizer- 
persister (cp) value and feeding group, which can be further aggre-
gated into nematode indices that relate to soil food web function (Yeates 
and Bongers, 1999; Ferris et al., 2001; Neher, 2001; Ferris, 2010b). 
These indices can be used to infer soil food web disturbance (basal index 
(BI)), the microbial decomposition channel (channel index (CI)), 
nutrient inputs (enrichment index (EI)), trophic complexity (structure 
index (SI)), plant infestation (plant parasitic index (PPI)), and soil food 
web succession (maturity index (MI)) (Bongers, 1990; Bongers and 
Bongers, 1998; Yeates, 2003). Nematode indices can be easily integrated 
into the soil health framework because of their relationship to ecological 
function (Ferris et al., 2001; Ferris, 2010b). The quantification of 
nematode communities is affordable, reliable, and can provide extensive 
information on soil food web dynamics (Höss and Williams, 2009; Zhao 
et al., 2016). However, specific tradeoffs do exist, including extensive 
and laborious training in nematode identification (Neher, 2001). 

Nematode communities have yet to be integrated into the soil health 
framework. Moreover, we know very little regarding how nematode 
communities relate to soil biological health indicators such as soil 
mineralizable carbon (C), soil protein, permanganate oxidizable carbon 
(POXC), and enzyme activity (Tabatabai, 1994; Culman et al., 2012; 
Hurisso et al., 2018). Specifically, these soil biological health indicators 
are recommended by the Natural Resource and Conservation Service 
(NRCS), and are also measured within common soil health testing 
packages such as the Cornell Comprehensive Assessment of Soil Health 
(CASH) and Haney Soil Health Test (Strauss et al., 2015; Moebius-Clune 
et al., 2016). 

Evidence suggests that nematode community structure and soil 
biological health indicators may be strongly integrated with similar soil 
health processes related to nutrient cycling and decomposition (Gao 
et al., 2016; Martin and Sprunger, 2021a; Martin and Sprunger, 2021b; 
Neher, 2001). Verhoef and Brussaard, (1990) found that nematodes 
heavily impact nitrogen (N) cycling and account for 30% of N miner-
alization via microbial grazing. Specifically, bacterivores, fungivores, 
and omnivorous nematodes prey on microbes and excrete excess nutri-
ents as ammonium for plant uptake (Ingham et al., 1985; Bonkowski 
et al., 2009). Microbivorous nematodes directly regulate organic matter 
decomposition through preying on microbial communities that are 
responsible for the breakdown of organic matter (Freckman, 1988). Soil 
health indicators such as soil protein or enzyme activity can estimate 
labile N pools and organic matter decomposition, but the lack of inte-
gration of nematode community structure with these soil health in-
dicators provides an incomplete representation of nutrient cycling 
processes (Dupont et al., 2009). 

Nematode indices and soil biological health indicators are affected 
by similar soil functions such as organic matter decomposition and C 
cycling. For example, the SI represents nematode trophic food web 
complexity, where an enhanced SI indicates increased predator–prey 
interactions which can control the rate of organic matter decomposition 
(Wardle et al., 1995). Additionally, the EI and CI can serve as an indi-
cator of N-enrichment and whether the decomposition channel is fungal 
or bacterial dominated, respectively (Ferris et al., 2001). Organic matter 
decomposition can be estimated through soil health indicators such as 
mineralizable C or enzyme activity, however, the relationships between 
these soil health indicators and the SI, EI, and CI are severely under-
studied. The SI has also been linked to soil health indicators that 
represent the labile C pools (Margenot and Hodson, 2016; Zhong et al., 
2017; Liu et al., 2021). In forest systems, Margenot and Hodson, (2016) 
demonstrate that soil C lability drives nematode trophic complexity, 
whereby predatory nematodes are more concentrated in areas where 
soil C pools are less labile. Permanganate oxidizable carbon (POXC) and 
mineralizable C, two key soil health indicators that reflect different 
pools of soil C, should be further integrated with the SI to better un-
derstand how nematode communities drive soil C dynamics (Bardgett 
and van der Putten, 2014; Jiang et al., 2018). 

Exploratory factor analysis (EFA) may serve as a quantitative solu-
tion for integrating the relationship between common soil biological 
health indicators and nematode community structure and function. 
Specifically, EFA can quantitatively determine the underlying soil health 
traits that nematode communities and soil health indicators may share 
(Fabrigar and Wegener, 2011; Wade et al., under review). Thus far, a 
large effort has been made to use EFA for the quantification of soil pa-
rameters, including soil chemical and physical properties (Dobermann, 
1994; Shukla et al., 2006; Mairura et al., 2008; Lambrecht et al., 2016; 
Barlog et al., 2017; Liu et al., 2018; Zhang et al., 2018; Zhang et al., 
2020). However, Wade et al., (2020) is the only study to use sensitive 
soil biological health indicators including soil protein, POXC, and 
mineralizable C as the measured variables to determine soil health traits 
through EFA. Moreover, very few studies have used nematodes as 
measured variables to determine soil health traits (Bastida et al., 2008; 
Meng et al., 2013; Igalavithana et al., 2017; Horakova et al., 2020). 
Understanding how soil fauna fit and relate to soil health indicators is 
essential to further strengthen our understanding of soil biological 
health. Moreover, the creation of a conceptual framework to derive the 
relationships between soil biological health indicators and nematode 
communities can only be performed through the use of a quantitative 
analysis. 

The use of EFA is a powerful and quantitative tool that can aid in 
integrating nematodes into the soil health framework. Here, we used 
EFA on a suite of soil biological health indicators—both recommended 
soil biological health indicators and nematode measurements—from 
long-term experimental trials and farmer fields across Ohio. Specifically, 
this study aims to: 1) integrate our understanding of nematode structure 
and function with other soil biological health indicators to describe 
underlying soil health traits; and 2) determine how management prac-
tices alter these soil health traits. We hypothesize that 1) nematode 
indices will be more strongly integrated with soil health indicators than 
nematode feeding groups; and 2) management practices with decreased 
management intensity will enhance soil health traits. The ultimate goal 
of this work is to construct a more ecologically-integrated and 
biologically-based representation of soil health traits. 

2. Methods 

2.1. Experimental station sample collection 

All soil samples were collected from The Ohio State University 
Triplett-Van Doren long-term research trials, which includes two iden-
tical experiments located in the northwestern and eastern parts of Ohio. 
The northwestern and eastern experiment were both founded in 1963. 
The northwestern experiment soil series is a Hoytville clay loam and the 
eastern experiment soil series is a Wooster silt loam. Both experiment 
sites are full factorial randomized complete block designs that have 
three replicated blocks with two factors. The first factor is tillage, which 
consists of no-till (NT) and chisel till (CT) treatment. The second factor is 
crop rotation, which consists of a corn (Zea mays L.)-soybean (Glycine 
max L.) (CS) rotation , and a corn-forage-forage (CFF) rotation. In the 
northwest experiment the forage crop was alfalfa (Medicago sativa). 
Forage crops in the eastern experiment were an oat (Avena sativa) and 
red clover (Trifolium pratense) mix. Soil sampling occurred in the corn 
phase of each rotation. Soil samples were collected using a 1.9 cm 
diameter push probe to a depth of 10 cm. During planting (May 2020) 
and harvest (October 2020) ten soil cores were collected within each 
plot using stratified random sampling to make one composite sample. 
Soil was then subsampled for routine soil analyses (NCERA-13, 2015), 
soil moisture, POXC, protein, mineralizable C, nematode identification, 
and enzyme activity. 

2.2. On-farm sample collection 

Soil samples were collected from 44 farmer fields located across Ohio 
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(Table S1). Additionally, coordinates of sampling location, sampling 
date, livestock, tile drainage, tillage intensity, crop type, organic man-
agement, and soil texture class data were recorded for each sampling 
point (Table S1). Each participating farm was mailed a soil sampling kit 
and asked to collect 10 soil cores to a depth of 10 cm to make one 
composite sample per field. Once the soil samples were collected, the 
farmers mailed the soil samples to the Ohio Agriculture Research and 
Development Center (Wooster, OH) for soil health testing. Once 
received, soils were subsampled for routine soil analyses (NCERA-13, 
2015), soil moisture, POXC, protein, mineralizable C, nematode iden-
tification, and enzyme activity. 

2.3. Soil health test analysis 

A suite of soil biological health indicator analyses were conducted for 
both on-station and on-farm samples. Enzyme activities of acid phos-
phatase (AP), β-glucosidase (GLU) , N-acetyl-β-glucosaminidase (NAG) 
(which is often also referred to as chitinase), and arylsulfatase (AS) were 
analyzed using protocols adapted from (Tabatabai, 1994; Deng and 
Popova, 2011). Enzyme activity was determined colorimetrically from 
the quantitative assessment of the recovery of p-nitrophenol added to 
the soil (Tabatabai, 1994). Soil, buffer, and substrate were incubated at 
37̊C for 1 h. The reaction was terminated with 0.5 M CaCl2 and 4 mL of 
Tris (hydroxymethyl) aminomethane (THAM) (0.1 M, pH 12). Absor-
bance was measured colorimetrically at 415 nm. Permanganate 
oxidizable carbon (POXC), which measures a slightly processed pool of 
organic matter in the soil was measured using methods adapted from 
Culman et al., (2012). Briefly, potassium permanganate (KMnO4) was 
reacted with soil (2.5 g) and absorbance was measured in a 96-well plate 
reader. Autoclave-citrate extractable (ACE) soil protein (soil protein), 
which infers organic N was analyzed (Hurisso et al., 2018). Specifically, 
sodium citrate solution was added to the soil, autoclaved, and the su-
pernatant was measured using the colorimetric bicinchoninic-acid 
(BCA) assay (Thermo Scientific, Pierce, Rockford, IL) in a 96-well 
spectrophotometric plate reader at 562 nm. Mineralizable C—which 
indicates the pool of soil C available to microbial communities—was 
measured via a 24-hour laboratory incubation (Hurisso et al., 2016; 
Franzluebbers and Haney, 2018). Mineralizable C was measured using a 
LI-820 infrared gas analyzer (LI-COR, Biosciences, Lincoln, NE) to 
determine the concentration of carbon dioxide (CO2). Organic matter 
(OM) was measured by Spectrum Lab (Washington Court, OH) through 
loss of ignition and verified using the Walkley-Black method (Roper 
et al., 2019). 

2.4. Nematode structure and function analyses 

Free-living nematodes were extracted using the elutriation and 
centrifugal flotation method (Oostenbrink, 1960; Hooper et al., 2005). 
Briefly, soil samples were passed through an elutriator. The collected 
solution was processed using centrifugal sugar flotation to bring the 
nematodes into the supernatant solution. Total nematode abundance 
was determined by counting individuals under a dissecting microscope 
at 50x magnification. Each nematode was classified as an adult or ju-
venile to allow for the determination of population stage. From each 
sample, 100 nematodes were identified to family and assigned to trophic 
and colonizer-persister groups using live identification with a compound 
microscope (Yeates et al., 1993; Bongers and Bongers, 1998). The 
identification of nematodes to family allowed for the determination of 
nematode feeding group composition for each soil sample (bacterivore, 
fungivore, predator/omnivore, and plant parasitic). Nematode indices, 
which can serve as indictors of soil health were calculated using Nem-
atode INdicator Joint Analysis (NINJA) (Sieriebriennikov et al., 2014). 

2.5. Statistical analysis 

We used exploratory factor analysis (EFA)—a form of latent variable 

analysis—to examine the underlying soil health traits described by our 
soil health indicators and nematode measurements (Fabrigar and 
Wegener, 2011). The underlying constructs that EFA describes will be 
referred to as soil health traits within this study. The measured variables 
used in the EFA (i.e., soil biological health indicators) were: AP, GLU, 
NAG, AS, POXC, soil protein, mineralizable C, organic matter, EI, SI, BI, 
CI, MI, PPI, bacterivores, fungivores, predator-omnivores, and plant 
parasitic nematodes. 

Four built-in quantitative analyses within the nfactors package in R 
were used to determine the number of underlying constructs (i.e., soil 
health traits) for this study (Fig S1; R Core Team, 2021; Raiche et al., 
2013). Soil health indicators were retained on each underlying construct 
if the loading of the soil health indicator onto the underlying construct 
was > 0.45 (Hu and Bentler, 1999). Fig. 1 displays a conceptual figure of 
an EFA in which the soil health indicators are reduced into four un-
derlying latent variables. The psych package in R was used to conduct the 
EFA (Revelle, 2021). Latent variables were named after careful analysis 
of the retained soil health indicator loadings. 

2.6. Confirmatory factor analysis 

A confirmatory factor analysis (CFA) using the variables retained for 
each latent variable was used to test the model fit (Fig. 1). To evaluate 
model fit, a combinatorial approach as recommended by Hu and Bentler 
(1999) was used. Specifically, the Root Mean Square Error of Approxi-
mation (RMSEA) and Standardized Root Mean Square Residual (SRMR) 
were used to assess the goodness of fit of the retained soil health in-
dicators on each of the latent variables. The CFA was used to derive 
individual scores for each of the soil health traits for each soil sample. 
The confirmatory factor analysis was conducted using the cfa() com-
mand in lavaan in R (Rosseel, 2012). 

To determine how management practices alter soil health traits an 
analysis of variance (ANOVA) was conducted on the scores generated for 
the validated latent variables using the lmerTest package in R (Fig. 1; 
Kuznetsova et al., 2017). Using soil textural class as a covariate in a 
linear model, significant effects were determined at p < 0.05. Graphing 
was conducted using ggplot2 (Wickham, 2016). 

3. Results and discussion 

3.1. Bivariate relationships between soil health indicators 

To determine the strength of relationship between soil health in-
dicators and nematode community structure and function (hypothesis 
1), a total of 125 observations were collected for 18 soil health in-
dicators: AP, AS, NAG, GLU, MI, PPI, CI, EI, SI, BI, plant parasitic, bac-
terivores, fungivores, omnivore and predators, POXC, mineralizable C, 
protein, and organic matter (Table S1). As EFA is dependent on the 
correlation matrix produced from the measured variables, a correlation 
analysis was conducted for the 18 soil health indicators. Strong corre-
lations (r > 0.80) were found between POXC and mineralizable C (r =
-0.81), GLU and NAG (r = 0.91), and GLU and AS (r = 0.85) (Table 1). 
The strong negative relationship found between POXC and mineraliz-
able C is not surprising given that POXC and mineralizable C represent 
soil C stabilization and C mineralization, respectively (Hurisso et al., 
2016). For example, Sprunger et al., (2020) reported that average re-
siduals from a linear regression model comparing mineralizable C and 
POXC demonstrated that a continuous corn system was influenced by 
mineralization processes (mineralizable C) compared to perennial sys-
tems that were generally more influenced by C stabilization processes 
(POXC). Like our study, enzyme activities have been found to be 
strongly and positively correlated with each other as increased microbial 
mineralization causes the simultaneous breakdown of nutrients (Zhu 
et al., 2014). Weak correlations were found between nematode indices 
and soil biological health indicators. However, it is likely that there is 
extensive collinearity between these variables (Dormann et al., 2013), 
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suggesting that a more intensive investigation into the quantification of 
the relationships between nematode community function and soil bio-
logical health is warranted. 

3.2. Soil health trait one: Fungal organic matter processing pathway 

We interpreted the indicators associated with soil health trait one as 
representing the fungal organic matter processing pathway. The soil 
biological health indicators associated with this soil health trait are 
mechanistically linked with fungal organic matter breakdown (Ferris 
and Bongers, 2006; Cloutier et al., 2020) and are therefore best inter-
preted as representing this soil process (Fig. 2). Within this soil health 
trait, nematode structure was more strongly associated than function, 
disproving our first hypothesis that nematode indices will be more 
strongly integrated with soil health indicators than nematode feeding 
groups. For example, soil biological health indicators of AP, fungivores, 
and POXC had strong and positive loadings of 0.74, 0.70, and 0.90, 
respectively on to soil health trait one (Table 2). Additionally, soil bio-
logical health indicators of plant parasitic nematodes, soil protein, and 
mineralizable C had strong and negative loadings of − 0.60, − 0.66, and 
− 0.81, respectively (Table 2). 

Supporting our interpretation, we found that fungal feeding nema-
todes (fungivores) are highly integrated with soil biological health in-
dicators of POXC and AP. The relationships between fungivores and the 
more processed, stable C pools were expected as the fungal decompo-
sition pathway has been found to dominate in systems where substrates 
have high C:N ratios (Hodge et al., 2000; Güsewell and Gessner, 2009; 
Gebremikael et al., 2016; Trap et al., 2016). Our findings are like those 
reported by Margenot and Hodson, (2016) which found that more 
processed pools of SOM supported greater fungal abundance. Given that 
POXC represents a more processed pool of C (Arachchige et al., 2018; 
Culman et al., 2012; Sherrod et al., 2019) it is expected that fungivore 
abundance would be related to POXC. Moreover, the fungal decompo-
sition channel is more commonly associated with slow decomposition 
where organic matter is incorporated into stable C pools (Okada and 
Ferris, 2001; Ferris and Matute, 2003; Steel et al., 2010). The positive 
loadings of AP and total fungivores is also supported by other studies 
that have reported that the fungal decomposition pathway is linked to 
soil P availability (Olusanya et al., 2019). Specifically, fungi have been 
found to dominate the decomposition channel when under P-limiting 
conditions (Güsewell and Gessner, 2009). Moreover, the loadings of soil 
health indicators on soil health trait one suggests that fungal feeding 
nematodes may be essential for supplying essential ecosystem services of 
C stabilization and P mineralization (Wang et al., 2004; Maina et al., 

2021). 
Given that fungal decomposition was positively associated with 

POXC, a pool that reflects more processed pools of C, it is not surprising 
that soil protein, mineralizable C, and plant parasitic nematodes were 
inversely related to fungivores as these measured variables are associ-
ated with low C:N ratios and increased nutrient mineralization (Bongers 
et al., 1997; DuPont et al., 2009). Additionally, given that soil protein is 
largely of fungal origin it is expected that fungal based protein would be 
inversely related with fungivore abundance (Rosier et al., 2006). 
Mineralizable C and soil protein represent microbial activity and the 
organic N pool that is available for mineralization, respectively (Fran-
zluebbers et al., 2000; Franzluebbers and Stuedemann, 2008; Haney 
et al., 2018; Hurisso et al., 2018). Moreover, increased mineralizable C 
and greater pools of inorganic N can result in C loss through increased 
microbial activity, which supports our findings of an inverse relation-
ship between indicators that represent C stabilization and C minerali-
zation (Nunes et al., 2020; Oldfield et al., 2021). Additionally, plant 
parasitic nematode infestation of plant roots can enhance microbial 
populations through the breakdown of root tissue which can cause an 
influx of organic material that is high in N (Tu et al., 2003). Therefore, it 
is not surprising that plant parasitic nematode abundance loaded 
opposite to indicators of C stabilization and slow nutrient 
decomposition. 

3.3. Soil health trait two: rate of nutrient cycling 

We interpreted the second soil health trait as representing the “rate 
of nutrient cycling” due to the strong positive loadings from enzyme 
activities and specific nematode feeding groups (Table 2; Fig. 2). Spe-
cifically, the loadings of NAG, AS, and predator/omnivore nematode 
feeding groups were 0.74, 0.87, and 0.49, respectively (Table 2). These 
results disproved our first hypothesis, given that nematode feeding 
groups rather than nematode indices loaded with soil biological 
indicators. 

Predator/omnivore nematode feeding groups are essential for the 
maintenance of ecosystem function (IPBES, 2019; Wardle, 2005; 
Sánchez-Moreno et al., 2009). Moreover, omnivore and predator nem-
atodes are essential for the top-down control of the microbivorous 
nematode populations, and are limited by primary productivity (Ingham 
et al., 1985; Wardle et al., 1995; Yeates and Wardle,1996; Conti et al., 
2020). The predator–prey relationship between predator/omnivore 
nematodes and microbivorous nematodes allows for nutrient processing 
up the soil food web, which is crucial for nutrient storage and assimi-
lation (Neher, 2001; Yeates, 2003). Our results indicate that greater 

Fig. 1. Conceptual figure of the methodology for describing latent variables from soil biological health indicators using an exploratory factor analysis and deter-
mining the effect that management practices have on soil health traits. 
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nutrient cycling by microbial populations may play a role in augmenting 
the top-down regulation of soil food webs. Predator/omnivore nema-
tode feeding groups have been linked to the regulation of N minerali-
zation through the consumption of bacterivorous nematodes (Beare, 
1997; Culman et al., 2010). Additionally, AS is an indicator of greater 
plant available SO4 (Bandick and Dick, 1999). Nematode abundance has 
been reported to increase with greater AS activity (Garcıá-Álvarez et al., 
2004), yet the relationship between predator/omnivore nematodes and 
AS has not been mechanistically linked before. These results therefore 
point to the importance of a structured soil food web for enhanced S and 
N cycling, which has implications for improved soil health. The AS 
enzyme cleaves C–O–S bonds and the overall activity is strongly corre-
lated to organic C pools, thus enhanced S cycling through predator/ 
omnivore nematodes may lead to greater organic C pools (Ekenler and 
Tabatabai, 2003). Additionally, increased NAG activity has been linked 
to enhanced ecosystem and soil health as greater N cycling through the 
microbial pool allows for reduced input of inorganic N fertilizer and 
enhanced organic N pools (Drinkwater and Snapp, 2007; Cenini et al., 
2016; Martin and Sprunger, 2021b). Consequently, the integration of 
predator/omnivore nematode feeding groups with NAG activity in-
dicates that structured soil food webs are essential for maintained 
nutrient cycling and sustained organic N pools. 

3.4. Soil health trait three: trophic complexity 

Soil health trait three was interpreted to represent “trophic 
complexity” given the nematode index loadings from the MI, SI, and EI 
(Fig. 2). Moreover, these loadings reflect soil food web complexity, 
structure, and nutrient input which is why soil health trait three was 
inferred to be linked to trophic complexity. Soil health trait three had 
positive loadings from the MI and SI of 0.98 and 0.58, respectively 
(Table 2). Additionally, the EI had a factor loading of − 0.59 onto soil 
health trait three. Nematode indices were the only measurements to load 
onto soil health trait three. This suggests that nematode indices and 
other soil biological indicators, such as nematode feeding groups are not 
regulated by similar underlying soil health traits. These results are 
contrary to our first hypothesis that indicators of nematode function and 
soil health indicators would be related to similar soil health traits. 

The positive relationship between the MI and SI was not surprising 
given that both indices are influenced by the abundance of K-strategist 
nematodes (Bongers and Bongers, 1998, Ferris et al., 2001). Moreover, 
the negative relationship between the EI and SI is supported by soil 
faunal profiles, which demonstrate the inverse relationship between the 
EI and SI (Ferris et al., 2001). For example, as the EI increases and SI 
decreases soil food webs become disturbed, bacterial dominated, and N- 
enriched (Ferris et al., 2001), whereas systems that have moderate EI 
and high SI are found to be undisturbed, fungal dominated, and 
moderately N enriched (Ferris and Matute, 2003). Our results further 
support the strong linkage between the EI and SI, as these nematode 
indicators were all governed by the same underlying soil health trait. 
Moreover, it was notable that common soil biological health indicators 
and nematode indices did not describe similar underlying soil health 
traits. Specifically, these results reveal that nematode indices may be 
poorly suited for integration with soil biological health indicators in 
agricultural systems of the Midwest. 

3.5. Soil health trait four: cumulative disturbance 

We interpreted soil health trait four as “cumulative disturbance” due 
to the positive loadings from the EI and SI and negative loading from the 
BI, the latter of which is strongly associated with ecosystem disturbance. 
Soil health trait four had moderate and positive loadings from the EI and 
SI, with loadings of 0.51 and 0.50, respectively (Table 2). Additionally, 
the BI loaded strongly and negatively onto soil health trait four, with a 
loading of − 0.90. Similar to soil health trait three, only nematode 
indices of the EI, SI, and BI loaded onto soil health trait four. Ta
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Functionally, this suggests that different soil health traits inform nem-
atode feeding group abundance and the derived nematode indices. 
These results disproved our first hypothesis as feeding group abun-
dances were linked to common soil health indicators, and nematode 
indices were not linked to any of the soil health indicators. 

The BI inverse relationship to the SI and EI is further supported by 
the nematode community faunal analysis. Specifically, the SI and EI can 
be positively related to each other under undisturbed and moderately 
enriched conditions (Ferris et al., 2001). Moreover, when systems are 
undisturbed and moderately enriched it is not surprising that the BI, 

which indicates disturbed systems, would be inversely related to the EI 
and SI (Melakeberhan et al., 2021). Similar to the feeding groups in the 
“trophic complexity” trait, nematode indices were not functionally 
linked to other common soil health indicators. 

3.6. Integration of organic matter and soil biological indicators 

One very notable result from our analysis is that organic matter 
measured via loss-on-ignition and soil biological health indicators did 
not share underlying soil health traits. Specifically, OM loaded weakly 

Fig. 2. Named latent variables based on retained soil biological health indicators from the exploratory factor analysis.  

Table 2 
Factor loadings of measured variables onto the four latent variables. Retained factor loadings at > 0.45 are displayed in bold.   

Fungal Organic Matter Processing Pathway(LV1) Rate of Nutrient Cycling(LV2) Trophic Complexity (LV3) Cumulative Disturbance (LV4) 

Acid Phosphatase  0.74  0.23  − 0.05  0.02 
N-acetyl-β-glucosaminidase  0.22  0.74  0.02  − 0.04 
Aryl Sulfatase  − 0.03  0.87  0.00  − 0.05 
β-Glucosidase  0.06  0.96  0.01  0.02 
Fungivore  0.70  − 0.19  0.12  0.11 
Omnivore/Predator  − 0.17  0.49  0.24  0.15 
Plant Parasite  ¡0.60  − 0.05  − 0.13  − 0.09 
Bacterivore  − 0.13  0.16  − 0.02  − 0.03 
Maturity Index  0.01  0.07  0.98  0.02 
Structure Index  0.08  0.04  0.59  0.50 
Enrichment Index  − 0.06  0.15  ¡0.59  0.51 
Basal Index  − 0.05  0.05  − 0.04  ¡0.90 
Channel Index  0.18  − 0.07  0.18  − 0.40 
POXC  0.94  − 0.04  − 0.04  0.01 
Soil protein  ¡0.66  − 0.14  0.02  0.10 
Mineralizable Carbon  ¡0.81  − 0.12  − 0.02  0.05 
Organic Matter  0.24  − 0.04  0.07  − 0.05  
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onto all four soil health traits (Table 3). Organic matter is one of the most 
commonly measured parameters in soil fertility tests and has tradi-
tionally been used to infer nutrient retention, soil structure, and fertility 
(Doran and Parkin, 1994; Tabatabai, 1994; Weil and Magdoff, 2004). 
However, our results indicate that OM and soil biological health indi-
cators—both nematode and more common soil health measures—may 
not share similar underlying traits. This suggests that OM may be too 
coarse of a measurement to reflect changes in organic matter dynamics 
and the soil nematode community. 

3.7. Using data-model agreement to validate soil health traits 

Our CFA model showed an acceptable level of agreement between 
the data and the four-trait model implied by our EFA. Our CFA model 
had RMSEA = 0.13 and SRMR = 0.08, indicating an acceptable fit to the 
data. In context, the results of the CFA indicated that the soil health 
traits were accurately represented by the loadings of the various soil 
biological health indicators. This indicates that while our model suffi-
ciently describes the data, relationships between soil health traits and 
our measured variables were relatively weak, indicating significant 
room for improvement. Our results do not give us insight into how to 
achieve improved model fits in our current dataset. However, the results 
from the CFA are novel as it is uncommon to have a dependable model fit 
from a CFA without the further tuning of certain variables (Brown, 
2015). 

3.8. Management effects on soil health traits 

Our study determined how management practices would alter the 
soil health traits. Results demonstrated that reduced tillage intensity can 

enhance some soil health traits in both on-farm and experimental trials, 
which partially supported our second hypothesis that decreased man-
agement intensity will enhance soil health traits. Tillage intensity had 
significant effects on the fungal organic matter processing pathway and 
rate of nutrient cycling (p < 0.05; Table 3; Fig. 3). Fungal organic matter 
processing pathway and the rate of nutrient cycling increased under 
minimum or no-till conditions (Table 3; Fig. 3). This increase was 
consistent in both on-farm and experimental trials for the fungal organic 
matter processing pathway but was not consistent across contexts for the 
nutrient cycling trait. The decrease in fungal processing with increased 
tillage intensity is expected given that mechanical disturbance reduces 
fungal hyphae growth (Carneiro et al., 2019). Additionally, reduced 
tillage intensity can lead to increased residue input, which has been 
shown to enhance nutrient cycling (Hendrix et al., 1986; Wardle et al., 
1995; Fu et al., 2000). Our finding of increased fungal organic matter 
decomposition is consistent with previous meta-analyses examining the 
effects of tillage on arbuscular mycorrhizal fungi (Bowles et al., 2017) 
and the subsequent reflection of that decrease in traditional soil health 
indicators (Nunes et al., 2020). The mechanical disturbance of tillage 
degrades the overall structure of the soil food web, often decreasing crop 
productivity (Brussaard, 1997; Bongers and Bongers, 1998; Mezeli et al., 
2019). Additionally, reduced disturbance within minimum and no-till 
systems improves aggregate formation, enhancing both nematode 
habitat and the rate of nutrient cycling (Zhang et al., 2012; Zhong et al., 
2017). 

Unexpectedly, our results show that rate of nutrient cycling in on- 
farm trials was greater in minimum tillage systems than no-till sys-
tems, which partially disproved our second hypothesis (Fig. 3). There 
are several potential explanations for this unexpected result. First, this 
could reflect a bias arising from unbalanced sample sizes between 
minimum and no-till fields in the on-farm trials. Secondly, differing 
definitions of no-till between researchers and farmers could confound 
the data gathered in the on-farm trials (Uri, 2000). While the first two of 
these explanations suggest a false negative, it is also possible that the 
factor analytic approach is able to detect more subtle effects than other 
single-measurement methods. For example, our findings of greater 
nutrient cycling in minimum tillage than no-till systems could also be 
attributed to the length of time since no-till was initiated, as it often 
takes 5 or even 10 years before the benefits are consistently realized 
(Pittelkow et al., 2015). Thus, our results could reflect transient in-
creases in overall nutrient cycling in on-farm minimum till systems, 
although our results don’t permit further validation of this explanation. 
Nevertheless, these contrasting results between on-farm and experi-
mental trials demonstrate the potential for factor analytic methods to be 
utilized as a tool for site-specific soil health assessment. 

3.9. Nematode indices are decoupled from other soil health indicators 

Our results indicate that nematode indices are not linked with other 
soil health indicators. Specifically, correlations indicate a weak rela-
tionship between all nematode indices and soil biological indicators 
(Table 1). Additionally, soil biological health indicators and nematode 
indices did not represent similar soil health traits (Fig. 2). Moreover, the 
soil health traits that nematode indices loaded on were found to be 
unresponsive to changes in management intensity (Fig. 3). Collectively, 
this suggests that nematode indices may not be responsive to changes in 
management or actively cycling fractions of organic matter. Thus, while 
nematode indices were intended to serve as bioindicators of disturbance 
and the condition of the soil food web (Ferris et al., 2001), nematode 
community structure and soil biological health indicators may be more 
informative in terms of explaining ecosystem processes. Our findings 
corroborate Wall et al., (2002) where univariate nematodes indices 
failed to represent structural changes in the nematode community when 
comparing between sandy dune and beach systems. Thus, future 
research that aims to investigate ecosystem functioning should utilize 
nematode community structure rather than nematode indices (Martin 

Table 3 
Analysis of Variance of the effect of environmental variables on each latent 
variable. Texture class was analyzed as a covariate within the model. (*) in-
dicates p < 0.05.  

Fungal Organic Matter Processing 
Pathway (LV 1) 

Factor F- 
Value 

P-values  

Tillage 5.43 <0.006*  
Experiment 
Trial 

160.5 <0.0001*  

Tile Drainage 1.67 0.20  
Crop Type 1.3 0.22  
Livestock 0.86 0.35  
Organic System 1.2 0.27 

Rate of Nutrient Cycling (LV 2) Factor F- 
Value 

P-values  

Tillage 9.2 <0.0001*  
Experiment 
Trial 

194.15 <0.0001*  

Tile Drainage 0.63 0.43  
Crop Type 1.5 0.14  
Livestock 0.39 0.53  
Organic System 0.43 0.51 

Trophic Complexity(LV 3) Factor F- 
Value 

P-values  

Tillage 9.2 0.50  
Experiment 
Trial 

4.9 0.10  

Tile Drainage 1.2 0.28  
Crop Type 1.5 0.33  
Livestock 1.1 0.29  
Organic System 3.72 0.057* 

Cumulative Disturbance(LV 4) Factor F- 
Value 

P-values  

Tillage 0.37 0.69  
Experiment 
Trial 

40.54 0.51  

Tile Drainage 0.46 0.52  
Crop Type 1.5 0.34  
Livestock 0.50 0.47  
Organic System 0.08 0.77  
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and Sprunger, under review). 

3.10. Novelty of EFA and future research 

Thus far, soil health literature has relied on individual indicators to 
explore differences in soil health (Harris et al., 1997; Lehmann et al., 
2020). Moreover, as individual indicators can represent various aspects 
of the soil health framework there is an imperative need to determine 
and quantify the underlying traits that soil health indicators share 
(Janzen et al., 2021). Exploratory factor analysis can serve as an 
empirical and rigorous approach for the quantification of underlying soil 
health traits (Wade et al., under review; Zhang et al., 2018). Quantita-
tive analysis built on EFA can be subsequently linked to soil health 
outcomes and ecosystems processes (Wade et al., 2020). Moreover, in 
this study the use of EFA synthesized data to build a strong conceptual 
foundation to identify and quantify the underlying soil health traits that 
inform both common soil biological health indicators and nematode 
communities. Our results demonstrate that this rigorous quantitative 
model can be used to integrate theory and empirics of soil biological 
health. Soil health traits that were shared by nematode feeding groups 
and other common soil biological indicators may be indicative of the 
ecosystem functions that are essential for C accrual and sustained crop 
productivity (DuPont et al., 2009; Lindahl and Tunlid, 2015). However, 
future research should seek to validate the soil health traits we have 
elucidated here and link those traits to specific ecosystem services. 

4. Conclusion 

This study utilized factor analytic approaches to incorporate nema-
tode community structure and function into existing interpretations of 
soil biological health indicators. First, we showed that nematode feeding 
groups share underlying soil health traits and can be integrated with 
commonly used soil biological health indicators of enzyme activities, 
soil protein, mineralizable C, and POXC. Next, we showed that nema-
tode indices did not share underlying soil health traits with other soil 
biological health indicators. Lastly, we validated our interpretations of 
specific EFA-derived soil health traits by demonstrating that they are 
sensitive to management practices, producing consistent effects across 
both experimental and on-farm studies. Furthermore, our results indi-
cate that organic matter measured via loss on ignition—a measurement 
included in many commercial soil fertility tests—did not provide 
meaningful information about our four soil health traits. Taken together, 
our findings demonstrate the potential to integrate nematode commu-
nity structure (i.e., nematode feeding groups) and indices within com-
mon soil health assessment frameworks. This integration of higher 
trophic levels of soil food webs with soil health indicators has the po-
tential to better reflect and predict important ecosystem processes and 
lead to the development of improved soil health. Moreover, nematode 
communities may serve as valuable soil biological indicators that could 
help foster more sustainable management practices leading to improved 
soil health traits including, enhanced nutrient cycling, reduced distur-
bance, and greater trophic complexity. 
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Fig. 3. The effect of tillage (color) and experiment type on each named latent variable. Data points represent individual observations from the confirmatory factor 
analysis. Error bars represent one standard error from the mean. 
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